Radiology

Health needs to be evaluated once in a while to assess that your body is always in good condition.
Our diagnostic imaging includes both basic and newest interventions on the health systems.
At Tokyo Healthlink we vision to take the lead in providing superior quality of
diagnostic imaging and service. It is our commitment in bringing to our patients the
latest medical advances and most innovative technology at a reasonable cost.

CT-SCANNER

X-ray computed tomography, also computed tomography (CT scan) or computed axial tomography (CAT scan), is a medical imaging procedure that utilizes computer-processed X-rays to produce tomographic images or ‘slices’ of specific areas of the body. These cross-sectional images are used for diagnostic and therapeutic purposes in various medical disciplines. Digital geometry processing is used to generate a three-dimensional image of the inside of an object from a large series of two-dimensional X-ray images taken around a single axis of rotation. CT produces a volume of data that can be manipulated, through a process known as “windowing”, in order to demonstrate various bodily structures based on their ability to block the X-ray beam. Although historically the images generated were in the axial or transverse plane, perpendicular to the long axis of the body, modern scanners allow this volume of data to be reformatted in various planes or even as volumetric (3D) representations of structures. Although most common in medicine, CT is also used in other fields, such as nondestructive materials testing. Another example is archaeological uses such as imaging the contents of sarcophagi. Usage of CT has increased dramatically over the last two decades in many countries.

MAMMOGRAPHY

Mammography is the process of using low-energy-X-rays (usually around 30 kVp) to examine the human breast and is used as a diagnostic and a screening tool. The goal of mammography is the early detection of breast cancer, typically through detection of characteristic masses and/or microcalcifications. Like all x-rays, mammograms use doses of ionizing radiation to create images. Radiologists then analyze the image for any abnormal findings. It is normal to use lower energy X-rays (typically Mo-K) than those used for radiography of bones.

BONE DENSITOMETRY

Densitometry is the quantitative measurement of optical density in light-sensitive materials, such as photographic paper or photographic film, due to exposure to light. Optical density is a result of the darkness of a developed picture and can be expressed absolutely as the number of dark spots (i.e., silver grains in developed films) in a given area, but usually it is a relative value, expressed in a scale. Since density is usually measured by the decrease in the amount of light which shines through a transparent film, it is also called absorptiometry, the measure of light absorption through the medium. The corresponding measuring device is called a densitometer (absorptiometer). The logarithm of the reciprocal of the transmittance is called the absorbance or density.

FLUOROSCOPY

Fluoroscopy is an imaging technique commonly used by physicians to obtain real-time moving images of the internal structures of a patient through the use of a fluoroscope. In its simplest form, a fluoroscope consists of an X-ray source and fluorescent screen between which a patient is placed. However, modern fluoroscopes couple the screen to an X-ray image intensifier and CCD video camera allowing the images to be recorded and played on a monitor. The use of X-rays, a form of ionizing radiation, requires the potential risks from a procedure to be carefully balanced with the benefits of the procedure to the patient. While physicians always try to use low dose rates during fluoroscopic procedures, the length of a typical procedure often results in a relatively high absorbed dose to the patient. Recent advances include the digitization of the images captured and flat panel detector systems which reduce the radiation dose to the patient still further.

ULTRASOUND IMAGING / SONOGRAPHY

Ultrasound is a cyclic sound pressure wave with a frequency greater than the upper limit of human hearing. Ultrasound is thus not separated from “normal” (audible) sound based on differences in physical properties, only the fact that humans cannot hear it. Although this limit varies from person to person, it is approximately 20 kilohertz (20,000 hertz) in healthy, young adults. The production of ultrasound is used in many different fields, typically to penetrate a medium and measure the reflection signature or supply focused energy. The reflection signature can reveal details about the inner structure of the medium, a property also used by animals such as bats for hunting. The most well known application of ultrasound is its use in sonography to produce pictures of fetuses in the human womb. There are a vast number of other applications as well.